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Abstract

The effects of hydrodynamic and thermal heterogeneity, for the case of variation in both the horizontal and vertical directions, on the
onset of convection in a horizontal layer of a saturated porous medium uniformly heated from below, are now studied analytically for the
case of moderate heterogeneity (rather than the weak heterogeneity previously studied), for the case of a square box where the properties
vary in a piecewise constant or linear fashion, with conducting impermeable top and bottom boundaries and insulating impermeable
sidewalls. In order to allow for the moderate heterogeneity the order of the Galerkin expansion employed has been increased, and
the expansion of a determinant of high order has been avoided by the use of a least squares methodology to find the critical value of
the Rayleigh number Ra. It is found that the effects of permeability heterogeneity and conductivity heterogeneity each cause a reduction
in the critical value of Ra in all cases, and the effects of horizontal and vertical heterogeneity are still approximately additive.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Studies of the effects of heterogeneity in the classical
Horton–Roger–Lapwood problem (the onset of convection
in a horizontal layer of a saturated porous medium uni-
formly heated from below) have been surveyed by Nield
and Bejan [1]. The pioneering study was that of Ghe-
orghitza [2], and particularly notable are the studies of ver-
tical heterogeneity (especially the case of horizontal layers)
by McKibbin and O’Sullivan [3,4], McKibbin and Tyvand
[5–7], Nield [8] and Leong and Lai [9,10], and the studies of
horizontal heterogeneity by McKibbin [11], Nield [12] and
Guonot and Caltagirone [13]. For completeness, we men-
tion that some more general aspects of conductivity heter-
ogeneity have been discussed by Vadasz [14], Braester and
Vadasz [15] and Rees and Riley [16]. Until recently the
interaction between vertical heterogeneity and horizontal
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heterogeneity had not been investigated, and this is the
focus of our current investigation.

The topic of permeability heterogeneity in particular is
currently of interest for an additional reason. Simmons
et al. [17] and Prasad and Simmons [18] have pointed out
that in many heterogeneous geologic systems, hydraulic
properties such as the hydraulic conductivity of the system
under consideration can vary by many orders of magnitude
and sometimes rapidly over small spatial scales. They also
pointed out that the onset of instability in transient, sharp
interface problems is controlled by very local conditions in
the vicinity of the evolving boundary layer and not by the
global layer properties or indeed some average property of
that macroscopic layer. They also pointed out that any
averaging process would remove the very structural con-
trols and physics that are expected to be important in con-
trolling the onset, growth, and/or decay of instabilities in a
highly heterogeneous system. In particular, in the case of
dense plume migration in highly heterogeneous environ-
ments the application of an average global Rayleigh num-
ber based upon average hydraulic conductivity of the
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Nomenclature

c specific heat
k k*/k0

k* overall (effective) thermal conductivity
k0 mean value of k*(x*,y*)
K K*/K0

K* permeability
K0 mean value of K*(x*,y*)
L height (and width) of the enclosure
P dimensionless pressure,

ðqcÞf K0

lk0
P �

P* pressure
Ra Rayleigh number,

ðqcÞf q0gbK0LðT 1�T 0Þ
lk0

t* time
t dimensionless time, k0

ðqcÞmL2 t�

T* temperature
T0 temperature at the upper boundary
T1 temperature at the lower boundary
u dimensionless horizontal velocity,

ðqcÞmL
k0

u�

u* vector of Darcy velocity, (u*,v*)
v dimensionless vertical velocity,

ðqcÞmL
k0

v�

x dimensionless horizontal coordinate, x*/L

x* horizontal coordinate
y dimensionless upward vertical coordinate, y*/L
y* upward vertical coordinate

Greek symbols

b fluid volumetric expansion coefficient
h dimensionless temperature, T ��T 0

T 1�T 0

l fluid viscosity
q density
q0 fluid density at temperature T0

r heat capacity ratio,
ðqcÞm
ðqcÞf

w streamfunction

Subscripts

f fluid
m overall porous medium

Superscript
* dimensional variable
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medium is problematic. In these cases, an average Rayleigh
number is unable to predict the onset of instability accu-
rately because the system is characterized by unsteady
flows and large amplitude perturbations.

Nield and Simmons [19] have emphasized the need to
distinguish between weak heterogeneity and strong hetero-
geneity. For the case of weak heterogeneity (properties
varying by a factor not greater than 3 or so) the introduc-
tion of an equivalent Rayleigh number is useful. The extent
to which an equivalent Rayleigh number (based on aver-
aged permeability and averaged conductivity) might work
was investigated by Nield [8] for the case of vertical heter-
ogeneity. He concluded that provided the variation of each
of the various parameters lies within one order of magni-
tude, a rough and ready estimate of an effective Rayleigh
number can be made that is useful as a criterion for Ray-
leigh–Bénard convection. This effective Rayleigh number
is based on the arithmetic mean of quantities (such as the
permeability) that appear in the numerator, and the har-
monic mean of quantities (such as the viscosity) that
appear in the denominator of the defining expression. Sim-
ilar conclusions were drawn by Leong and Lai [9,10]. In the
case of strong heterogeneity the concept of an effective
Rayleigh number loses validity as a criterion for the onset
of instability.

For the case of weak heterogeneity some progress has
been made, for the case of two-dimensional convection in
a rectangular box with impervious thermally insulated side
walls. Based on the expectation that for weak heterogeneity
the solution would not differ dramatically from the solu-
tion for the homogeneous case, one can utilize an exten-
sion, to the case of trial functions of both the horizontal
and vertical coordinates, of the Galerkin approximate
method that has been widely employed (see, for example,
Finlayson [20]). The present authors have used this meth-
odology in a series of papers [21–27], starting from a basic
problem using the Darcy model and then extending the
analysis to the Brinkman model, the double-diffusive situa-
tion, the case of heterogeneity of the basic vertical temper-
ature gradient, the case of local thermal non-equilibrium
and the case of a bidisperse porous medium, and also
allowing for the effect of heterogeneity of anisotropy. The
analysis leads to an eigenvalue equation involving a deter-
minant of large order, but in the case of weak heterogeneity
the expansion of the determinant can be handled by
neglecting terms that are of order higher than the second
in the relevant small quantities.

The present paper treats the case of moderate heteroge-
neity. The parameters expressing the variation from homo-
geneity are allowed to be of order unity rather than taken
to be small compared with unity. The order of the Galerkin
approximation employed is increased. The need to expand
a determinant of large order is avoided by using a method
of least squares to obtain the minimum Rayleigh number.

2. Analysis

Single-phase flow in a saturated porous medium is con-
sidered. Asterisks are used to denote dimensional variables.
We consider a square box, 0 6 x* 6 L, 0 6 y* 6 L, where
the y* axis is in the upward vertical direction. The side walls
are taken as insulated, and uniform temperatures T0 and
T1 are imposed at the upper and lower boundaries,
respectively.
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Within this box the permeability is K*(x*,y*) and the
overall (effective) thermal conductivity is k*(x*,y*). The
Darcy velocity is denoted by u* = (u*,v*). The Oberbeck–
Boussinesq approximation is invoked and local thermal
equilibrium is assumed. The equations representing the
conservation of mass, thermal energy, and Darcy’s law
take the form

ou�

ox�
þ ov�

oy�
¼ 0; ð1Þ

ðqcÞm
oT �

ot�
þ ðqcÞf u�

oT �

ox�
þ v�

oT �

oy�

� �

¼ o

ox�
k�ðx�; y�Þ oT �

ox�

� �
þ o

oy�
k�ðx�; y�Þ oT �

oy�

� �
ð2Þ

u� ¼ �K�ðx�; y�Þ
l

oP �

ox�
;

v� ¼ K�ðx�; y�Þ
l

� oP �

oy�
� q0bgðT � � T 0Þ

� �
: ð3a; bÞ

Here (qc)m and (qc)f are the heat capacities of the overall
porous medium and the fluid, respectively, l is the fluid vis-
cosity, q0 is the fluid density at temperature T0, and b is the
volumetric expansion coefficient.

We introduce dimensionless variables by defining

ðx; yÞ ¼ 1

L
ðx�; y�Þ; ðu; vÞ ¼ ðqcÞmL

k0

ðu�; v�Þ;

t ¼ k0

ðqcÞmL2
t�; h ¼ T � � T 0

T 1 � T 0

; P ¼
ðqcÞf K0

lk0

P �;

ð4a; b; c; d; eÞ

where k0 is the mean value of k*(x*,y*) and K0 is the mean
value of K*(x*,y*).

We also define a Rayleigh number Ra by

Ra ¼ ðqcÞfq0gbK0LðT 1 � T 0Þ
lk0

ð5Þ

and the heat capacity ratio

r ¼ ðqcÞm
ðqcÞf

: ð6Þ

The governing equations then take the form

ou
ox
þ ov

oy
¼ 0; ð7Þ

oh
os
þ 1

r
u

oh
ox
þ v

oh
oy

� �
¼ o

ox
kðx; yÞ oh

ox

� �
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oy
kðx; yÞ oh

oy

� �
;

ð8Þ

u ¼ �Kðx; yÞ oP
ox
; v ¼ Kðx; yÞ � oP

oy
þ rRah

� �
; ð9Þ

where k(x,y) = k*(x*,y*)/k0 and K(x,y) = K*(x*,y*)/K0.
We introduce a streamfunction w so that

u ¼ rRa
ow
oy
; v ¼ �rRa

ow
ox
: ð10a; bÞ
We also eliminate P. The result is
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ox
1

Kðx; yÞ
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ox

� �
þ o

oy
1

Kðx; yÞ
ow
ox

� �
þ oh

oy
¼ 0; ð11Þ
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ox

� �
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oy

� �
: ð12Þ

The conduction solution is given by

w ¼ 0; h ¼ 1� y: ð13a; bÞ

The perturbed solution is given by

w ¼ ew0; h ¼ 1� y þ eh0: ð14a; bÞ

To first order in the small constant e, we get

o

ox
1

Kðx; yÞ
ow0

ox

� �
þ o

oy
1

Kðx; yÞ
ow0

oy

� �
þ oh0

ox
¼ 0; ð15Þ

oh
os
þ Ra

ow0

ox
� o

ox
kðx; yÞ oh0

ox

� �
� o

oy
kðx; yÞ oh0

oy

� �
¼ 0: ð16Þ

For the onset of convection we can invoke the ‘‘principal of
exchange of stabilities” and hence take the time derivative
in Eq. (16) to be zero.

The boundary conditions are

w0 ¼ 0 and h0 ¼ 0 on y ¼ 0; ð17a; bÞ

w0 ¼ 0 and h0 ¼ 0 on y ¼ 1; ð18a; bÞ

w0 ¼ 0 and oh0=ox ¼ 0 on x ¼ 0; ð19a; bÞ

w0 ¼ 0 and oh0=ox ¼ 0 on x ¼ 1: ð20a; bÞ

This set of boundary conditions is satisfied by

w0mn ¼ sin mpx sin npy; m; n ¼ 1; 2; 3; . . . : ð21Þ

h0mn ¼ cos mpx sin npy; m; n ¼ 1; 2; 3; . . . : ð22Þ

Hence, we can introduce the Fourier expansions

w0 ¼
XN

m¼1

XN

n¼1

Amn sin mpx sin npy; ð23Þ

h0 ¼
XN

m¼1

XN

n¼1

Bmn cos mpx sin npy: ð24Þ

Substituting into the steady state form of Eqs. (15) and (16)
we obtain
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XN

m¼1

XN

n¼1

p2ðm2 þ n2ÞAmn sin mpx sin npy

þ Kðx; yÞ
XN

m¼1

XN

n¼1

pmBmn sin mpx sin npy

þ ðKx=KÞ
XN

m¼1

XN

n¼1

pmAmn cos mpx sin npy

þ ðKy=KÞ
XN

m¼1

XN

n¼1

pnAmn sin mpx cos npy ¼ 0; ð25Þ

Ra
XN

m¼1

XN

n¼1

pmAmn cos mpx sin npy

þ kðx; yÞ
XN

m¼1

XN

n¼1

p2ðm2 þ n2ÞBmn cos mpx sin npy

þ kxðx; yÞ
XN

m¼1

XN

n¼1

pmBmn sin mpx sin npy

� kyðx; yÞ
XN

m¼1

XN

n¼1

pnBmn cos mpx cos npy ¼ 0: ð26Þ

We now employ a Galerkin method. The expressions (21)
and (22) are now regarded as trial functions, and the
expressions (25) and (26) are the associated residuals. The
expression (25) is made orthogonal to each of the expres-
sions (21), and the expression (26) is made orthogonal to
each of the expressions (22).

Thus, one has 2N2 homogeneous equations in the 2N2

unknowns Amn, Bmn, where m = 1,2, . . .,N; n = 1,2, . . .,N.
The vanishing of the determinant of coefficients gives the
eigenvalue equation determining Ra. Rather than expand-
ing the determinant (something that is impractical when N

is large) we calculate an approximate value of Ra in the fol-
lowing way. We force a non-trivial solution of the system
of 2N2 equations by adding as a constraint the additional
equation

XN

m¼1

XN

n¼1

ðAmn þ BmnÞ � r ¼ 0; ð30Þ

where r is a constant scale factor.
We then have more equations than unknowns, so that the

system is over-determined, and thus no exact solution of the
augmented system exists. However, we can find the best least
squares fit to the augmented system and vary Ra to minimize
the error, and hence find the desired eigenvalue. The value of
r can be varied to sharpen the minimum.
M ¼

2p2 0 0 0 pI1111 pI1211 2pI2111

0 5p2 0 0 pI1112 pI1212 2pI2112

0 0 5p2 0 pI1121 pI1221 2pI2121

0 0 0 8p2 pI1122 pI1222 2pI2122

pRa 0 0 0 2p2J 1111 5p2J 1211 5p2J 2111

0 pRa 0 0 2p2J 1112 5p2J 1212 5p2J 2112

0 0 2pRa 0 2p2J 1121 5p2J 1221 5p2J 2121

0 0 0 2pRa 2p2J 1122 5p2J 1222 5p2J 2122

2
66666666666664
Specifically, we have the set of equations

Mx ¼ 0; ð31Þ

where

xT ¼ ðA11;A12; . . . ;A1N ;A21;A22; . . . ;A2N ; . . . ;

AN1;AN2; . . . ;ANN ;

B11;B12; . . . ;B1N ;B21;B22; . . . ;B2N ; . . . ;

BN1;BN2; . . . ;BNN Þ ð32Þ

M ¼ M11 M12

M21 M22

� �
ð33Þ

Explicitly, for the case where Kx/K,Ky/K,kx,ky are con-
stants, the orthogonality properties of the trial functions
lead to

ðM11Þmn ¼ ða2 þ b2Þp2dmn ð34Þ
ðM12Þmn ¼ paIabcd ð35Þ
ðM21Þmn ¼ Raapdmn ð36Þ
ðM22Þmn ¼ p2ða2 þ b2ÞJ abcd ð37Þ

where

a ¼ 1þ ½ðn� 1Þ=N �; b ¼ 1þ ðn� 1ÞmodN ;

c ¼ 1þ ½ðm� 1ÞN �; d ¼ 1þ ðm� 1ÞmodN : ð38Þ

Here, [x] denotes the integer part of x and dij is the Kro-
necker delta.

We use the notation

hf ðx; yÞi ¼
Z 1

0

Z 1

0

f ðx; yÞdxdy; ð39Þ

and define

Imnpq ¼ 4hKðx; yÞ sin mpx sin npy sin ppx sin qpyi; ð40Þ
J mnpq ¼ 4hkðx; yÞ cos mpx sin npy cos ppx sin qpyi: ð41Þ

We note that hk(x,y)i = 1 and hK(x,y)i = 1. Also,

4hsin mpx sin npy sin ppx sin qpyi

¼
1 if m ¼ p and n ¼ q

0 otherwise

�
; ð42Þ

4hcos mpx sin npy cos ppx sin qpyi

¼
1 if m ¼ p and n ¼ q

0 otherwise

�
: ð43Þ

For example, in the case N = 2 one has
2pI2211

2pI2212

2pI2221

2pI2222

8p2J 2211

8p2J 2212

8p2J 2221

8p2J 2222

3
77777777777775

ð44Þ
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To be specific, we sum the squares of the left-hand sides of
equations represented by Eq. (31) together with Eq. (30),
and adjust the values of the unknowns Amn and Bmn to ob-
tain the minimum value of that sum for a fixed value of Ra.
Then we vary Ra to minimize this minimum value.

We apply the procedure to a quartered square with
piecewise-constant properties. We consider the case

Kðx; yÞ ¼ 1� dH � dV ; kðx; yÞ ¼ 1� eH � eV ;

for 0 < x < 1=2; 0 < y < 1=2;

Kðx; yÞ ¼ 1þ dH � dV ; kðx; yÞ ¼ 1þ eH � eV ;

for 1=2 < x < 1; 0 < y < 1=2;

Kðx; yÞ ¼ 1� dH þ dV ; kðx; yÞ ¼ 1� eH þ eV ;

for 0 < x < 1=2; 1=2 < y < 1;

Kðx; yÞ ¼ 1þ dH þ dV ; kðx; yÞ ¼ 1þ eH þ eV ;

for 1=2 < x < 1; 1=2 < y < 1;

Kðx; 1=2Þ ¼ 1� dH ; kðx; yÞ ¼ 1� eH ;

for 0 < x < 1=2;

Kðx; 1=2Þ ¼ 1þ dH ; kðx; yÞ ¼ 1þ eH ;

for 1=2 < x < 1;
Table 1
The values of S = (Ra � Ra0)/Ra0, where Ra0 is the value for the homogeneous
the conductivity parameters eH, eV

dH,dV, eH, eV S Swh

0.1,0,0,0 �0.0126 �0.0128
0,0.1,0,0 �0.0015 �0.0014
0.1,0.1,0,0 �0.0139 �0.0142

0,0,0.1,0 �0.0053 �0.0050
0,0,0,0.1 �0.0098 �0.0086
0,0,0.1,0.1 �0.0152 �0.0136

0.1,0,0.1,0 �0.0020 �0.0018
0,0.1,0,0.1 �0.0040 �0.0031
0.1,0.1,0.1,0.1 �0.0058 �0.0049

0.2,0,0,0 �0.0448 �0.0512
0,0.2,0,0 �0.0055 �0.0055
0.2,0.2,0,0 �0.0496 �0.0567

0,0,0.2,0 �0.0215 �0.0200
0,0,0,0.2 �0.0390 �0.0342
0,0,0.2,0.2 �0.0648 �0.0542

0.2,0,0.2,0 �0.0073 �0.0072
0,0.2,0,0.2 �0.0162 �0.0123
0.2,0.2,0.2,0.2 �0.0230 �0.0195

0.3,0,0,0 �0.0868 �0.1153
0,0.3,0,0 �0.0121 �0.0123
0.3,0.3,0,0 �0.0965 �0.1276

0,0,0.3,0 �0.0516 �0.0450
0,0,0,0.3 �0.0871 �0.0770
0,0,0.3,0.3 �0.1717 �0.1220

0.3,0,0.3,0 �0.0164 �0.0162
0,0.3,0,0.3 �0.0372 �0.0277
0.3,0.3,0.3,0.3 �0.0511 �0.0439

The values are obtained with the value N = 4 except where otherwise specified
from Eq. (47).
rKð1=2; yÞ ¼ 1� dV ; kðx; yÞ ¼ 1� eV ;

for 0 < y < 1=2;

Kð1=2; yÞ ¼ 1þ dV ; kðx; yÞ ¼ 1þ eV ;

for 1=2 < y < 1;

Kð1=2; 1=2Þ ¼ 1: ð45Þ
3. Results and discussion

We found that, with good approximations for the start-
ing values of the Amn and Bmn, we could employ the Math-
ematica package to locate a minimum value of Ra for
values of N as large as 10 (corresponding to the solution
of 200 equations in 200 unknowns). Further, for parameter
values within a certain domain, we found convergence as
we increased N through the values 2,4,6, . . .. When conver-
gence occurred, we generally obtained accuracy to at least
three significant figures when N = 4. According, we have
generally presented results for that value of N. We rea-
soned that the extra effort in going to a larger value of N

was not warranted. In fact, we found that locating a min-
imum value of Ra became a tricky process for large N
case, for various combinations of the permeability parameters dH, dV and

dH,dV, eH, eV S Swh

0.4,0,0,0 �0.1314 �0.2050
0,0.4,0,0 �0.0212 �0.0219
0.4,0.4,0,0 �0.1464 �0.2269

0,0,0.4,0 �0.1013 �0.0800
0,0,0,0.4 �0.1286 �0.1370
0,0,0.4,0.4 �0.2437* (N = 2) �0.2170

0.4,0,0.4,0 �0.0288 �0.0288
0,0.4,0,0.4 �0.0684 �0.0493
0.4,0.4,0.4,0.4 �0.0901 �0.0781

0.5,0,0,0 �0.1755 �0.3202
0,0.5,0,0 �0.0324 �0.0343
0.5,0.5,0,0 �0.1953 �0.3545

0,0.5,0,0 �0.1780 �0.1250
0,0,0,0.5 �0.2391 �0.2140
0,0,0.5,0.5 �0.3938* (N = 2) �0.3390

0.5,0,0.5,0 �0.0448 �0.0450
0,0.5,0,0.5 �0.1112 �0.0770
0.5,0.5,0.5,0.5 �0.1770* (N = 8) �0.1220

. The values of Swh (the weak heterogeneity approximation) are calculated
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because accumulated round-off error could lead to the
splitting of a single genuine local minimum into two spuri-
ous local minima. We found that a convenient choice for r
was the value r = 100 (something of the same order-of-
magnitude as Ra).

We have presented our results in terms of the parameter
S defined by

Ra ¼ Ra0ð1þ SÞ; ð46Þ

where Ra0 = 4p2 is the critical value of Ra for the homoge-
neous case.

For the case where the heterogeneity parameters are
small compared with unity, it is known (see the erratum
to [21]) that

S ¼ �½1:281ðdH � 0:625eHÞ2 þ 0:137ðdV � 2:5eV Þ2�: ð47Þ

This now serves as a ‘‘weak heterogeneity approximation”.
Values calculated from this expression are included in

Table 1 for comparison with those computed by the least
squares method. In this table we have presented values
for five levels of heterogeneity, 0.1, 0.2, 0.3, 0.4, 0.5. Larger
values are not realistic because they correspond to a nega-
tive permeability or conductivity in one quadrant of the
square. The values indicated by an asterisk distinguish
cases where convergence has broken down and to fill the
gap in the table we have presented a ‘‘best guess” obtained
using an alternative value of N. It appears that jSj < 0.2
gives an estimate for the domain of convergence.

At each level of heterogeneity, we have presented results
for nine combinations of values of the heterogeneity
parameters dH, dV, eH, eV. These have been grouped into
three sets of three combinations. In the first set the perme-
ability parameters dH, dV have been varied, in the second
set the conductivity parameters eH, eV have been varied,
and in the third both permeability and conductivity param-
eters have been varied.

An obvious feature of the results is that all of the values
of S presented are negative. That means that the effect of
heterogeneity of any kind is to reduce the value of the crit-
ical Rayleigh number. In other words, the effect of hetero-
geneity for a square box is always destabilizing. (We
already knew this for the case of weak heterogeneity since
the expression for S in Eq. (47) is negative definite.)

The results in the table show that, as one would expect
from Eq. (47), there is little interaction between the hori-
zontal heterogeneities and the vertical heterogeneities. Fur-
ther, the effects of the combination of vertical and
horizontal heterogeneities are approximately additive.
The effects of permeability heterogeneities are of the same
order of magnitude as those of conductivity heterogene-
ities. Also as one would expect, the expression in Eq. (47)
is a good approximation at the 0.1 level of heterogeneity,
and is less good for higher levels, when it generally over-
predicts variations resulting from permeability heterogene-
ities and under-predicts those resulting from conductivity
heterogeneities.
4. Conclusions

In [21], we investigated the effect of weak heterogeneity.
We have now extended the investigation to the case of
moderate heterogeneity. We have found that the weak het-
erogeneity expression given in Eq. (47) is a qualitatively
good approximation for the moderate heterogeneity situa-
tion. The case of strong heterogeneity remains as a chal-
lenge for a future investigation. (A preliminary step has
been made by Nield and Simmons [19], who proposed a
practical approximate criterion for instability.)
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